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ANALYSIS OF WAVES IN BOUNDED MAGNETOACTIVE PLASMA

Y. J. Seto (Dr. A. A. Dougal)

The investigation dealt with here is an analysis of radially

propagating waves in a bounded ma_etoactive plasma. The configuration

conceive_ for this analytical investigation is a partially ionized

plasma slab, bounded by two infinitely large conducting plates of

finite separation. The plates may be in direct contact with the plasma

or insulated frem it by thin layers of dielectric materials. The static

magnetic field is imposed upon the plasma in a directio_ normal to the

plates. The waves are generated by a current source iu the plas_ with

an arbitrary current distribution. This portion of the report describes

the preliminary study that has been carried out.

Although the main theme of the proposed analytical problem is

quite specific, in the course of the analysis an effort has been made

to utilize techniques as general as possible In hope that the methods

may be employed elsewhere to solve other types of problems as well.

I. Homogeneous Wave Equation in Anisotropic Media

The presence of a static magnetic field in a plasma region results

in an effective electrical conductivity of the plas_ which is a dyadic

form. Assuming monochromatic waves, the wave equation m_y be written



as:
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where _ is the electric field intensity. Assuming spatial homogen&ity_ .:
d

the dyadic _ is a funotien of the frequency, the permittivity, the

permeability, the magnetic field, and the effective electrical conduc-

tivity of the plas_ only.

Equation (2-1) is seen to resemble a Helmholtz equation except that

is a dyadic; it may be called a dyadic-vector Hel_holtz equatioc.

It is well known that the scalar Helmholtz equation is separable into

eleven different coordinate systems, and that the vector Helmholtz

1
equation is separable into _nly six coordinate systems. Despite the

fact that the dyadic-vecter Helmholtz equation has been frequently

encountered in connection with the studies of crystal materials and

plasma fields, and that its solutions have been obtained and used

extensively for problems involving the rectangular coordinate syste_

2
and the circular oylindrical coordinate system, to this author's

knowledge the separability of the dyadic-vector Helmholtz equation has

not yet been fully investigated. In this work, the separability of the

dyadic-vector Helmholtz equation is studied, since by determining the

coordinate systems in which the equation is separable one has gained

knowledge of exactly in what coordinate systems the equation is

solvable by a separation method. In the application of boundary value

problems, separaticD into the form that facilitates the fitting of

boundary surfaces is meet desirable. Hence, it is advisable to separate



the dyadic-vector Helmholtz equation into terms of longitudinal, L,

and transverse, H and N, vector components.

The first term in Eq. (2-1) is a vector operator term. A review

of the separability of a vector Helmholtz equation shows that the

coordinate systems in which the vector Helmholtz equation is separable

must be a coordinate system in which one of the scale factors is

unity, and that the ratio of the other two scale factors mu3t be

independent of the coordinate corresponding to the unity scale factor.

The six coordinate systems which meet these requirements are the

spherical, the conical, and the four cylindrical coordinate systems.

If the first term of Eq. (2-1) is to follow a similar pattern of

separation, the coordinate system in which Eq. (2-1) is separable must

fulfill the same requirement that the separable coordinate systems for

vector Hel_holtz equation fulfill.

The dyadic _ in Eq. (2-i) is by no means an arbitrary constant.

For the purpose of this work, _ may be limited to the form:

co _L,

Eq. (2-2) implies that the static magnetic field is in the direction

parallel or anti-parallel to the coordinate corresponding to the unity

scale factor. Without losing generalities, one denotes this coordinate

_r_ , and its unit vector _S " A close examination shows that only four

ou_ of the six coordinate sy_te_e physically realizable for such
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alignment of the static magnetic field; namely, the four cylindrical

coordinate systems including the rectangular, the circular cylindrical,

the elliptical cylindrical, an_ the parabolic cylindrical coordinate

systems. In either system, _j corresponds to the z axis. It _y first

seemto be pessimistic that the number of permissible coordinate

systems has been reduced to only four right at the onset. Fortunately,

however, it turns out that no other restrictions will be imposed that

will further reduce the numberof permissible coordinate systems.

In attempting to find the solution of Eq. (2-1), the difficulty

lies in the fact that the equation is a purely transverse one, while

due to the dyadic , the vector field E, in general, is not entirely

transverse. Onemayassumethat:

and

Expanding • E into vector forms, Eq. (2-i) becomes:

(2-5)
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It is also recognized that Eq. (2-1)implies:

(2-6)

Equations (2-5) and (2-6) constitute a set of basic equations with _s

being the explicit coordinate. The subscript _ indicates the

components of operators or vectors which are perpendicular to _ ,

whereas II indicates those parellel to _ .

.A

Xt is a_visable to further separate the transverse vector A into

two components, me tangential to the _ C surface and the other with a

component normal to the surface. Thus:

A=M N

..i (2-7)

Substitute Eq. (2-7) into Equations (2-5) and (2-6), after some

manipulations obtain the following set of equations:

z

(2-8)
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_u? _-T _qj = o

where Equations (2°8) az_d (2-9) are the .L component and It component

of Eq. (2-5)j respectively.

Close examinatio_ of Eq_tions (2-8) to (2-10) shows that solutions

may be obtained if the three scalar functions each satlsfies :

(2-1t)

/
or

l (2-12)

f

\
(2-13)

where _ is the separatio_ constant for the separation of _ . The

argument 7 2 in Eq. (2-11) or Eq. (2-12) must satisfy a determinant

equation:

(2-1_)

=0
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The order of Eq. (2-14) appears to be too high to be readily solved at

first, but it turns out that if # is not a function of T _ the result-

ing secular equation is only of fourth order, since the other four

roots, T_ o and _ , are trivial and may be discarded. The

dispersion relation yielded by Eq. (2-14) is:

(2-15)

Equations (2-8) to (2-I0) also indicate that the three scalar functions,

,_ ,_ ¢ ,=°_ot_e_o_t _oti_o _ th__o_u_o_
are written as :

= ,4_,'_.,/%.q.J.4,,,%j -}

then it is always possible to derive from Equations (2-8) to (2-i0)

two algebraic equations relating the three arbitrary constants, A, B,

and C.

In the ease of circular coordinates with open boundary in _ and

, the solutions may be written for an outgoing wave:

= H,_{T,¢'+_.._:,.-) e ,.r,,G_,,,

• _21 /nO (2-r-f)
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and the functional relations are:

(2.18)

and

{2-19)

¢4...(£,-4,)
eigenvalues n are integers whereas _The is:

where a is the separatio_ distance;,between the plates.

I_.. Inhomogeneous Wa_e Equation and the Green's Function

When a source is present in the plasma region, the source is

represented b_ a source f_netion J_ . Eq. (2-1) should be written:

(3-1)

It can be shown that Eq. (3-1) is solvable in terms of an integral
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representation

(3-2)

where the kernel _<#/_ is the usual Green's dyadic function except

that instead of satisfying Eq. (3-1) with an impulse source, it satisfies

the following:

where J is the idemfactor and is the conjugate of . The

use of the conjugate of _ in Eq. (3-3) is necessary if it is wished

to include the cases where _ is not Hermitian. Of course, when

is the Hermitiall,_= _ . Tn a_dition to satisfying Eq. (3-3),

the Green's function must also satisfy the same boundary condition that

the field satisfies.

One technique using tensor relations lea_ing to an integral repre-

sentation of the Green's dye_ic was first developed by Bunkin 3 and was

extende_by Chow. _'5 How@ver, an integral representation of the Green's

dyadic has two distinct disadvantages: (i) it is not always easy to

evaluate an integral_ (2) the integral representation of the Green's

function is applicable to problems of infinite domain only. When

boundaries exist, it is desirable to construct the Green's function

from series of eigenfunctions, which aescri_e the free waves.
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The derivation of a Green's function to be discussed here depends

upon whether there are boundar_ surfaces parallel to the _=C surface.

For brevity, only the case with boundary surfaces parallel to the

_3 = _ surface will be derived here. It is assured that the Green's

dyadic for the case of no boundary surface _a_allel to_=C surfaces

may also be derived with the same technique, except for some minor

modifications.

From the previous section it is seen that the eigenfunctio_

solutions of the homogeneous Helmholtz equations may be written:

_5
The index m in Eq. (3-_) designates the eigenvalue index arising

from the separatio_ of _ , whereas the index n designates the

eigenvalue arising from the separatio_ of the I coordinates; it depends

upon the types of boundary in the J- direction. If it is an open

boundary, n is a single index; on the other hand, if the boundary is

a closed one, then n is a double index. In such cases it might be

mote appropriate to replace n by two indices I, n.

s_ce the_o_1=s_ _, and_o _e related, _q. (3-4) _an
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further be represented in the following form:

"J .-I

In view of the forms appearing in Eq.

(3-5)

(3-5), it may be assumed that the

Green' s dyadic takes the reran:

(3-6)

where

(3-7 a)

(3-7 1))

(3-7 c)

vhere _ , _., and/_, are function of source coordinates ouly.

_ dependent functions, _ and f_ , are _he two independent

solutions of Eq. (2-13); they must be rel_ted by either set of the

equatians:

ter _o_e_ _o.n_ in _ (3-8 a)

The
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or

for open boundary in _3
(3-8b)

Since a closed boundary in _ is being co_sidered, Eq. (3-8 a) will

be _Iopt_l here, and for simplicity only the lower sign is used although

the upper sign will yield the same result. It is also observed that

although the vectors /_ , _ , and ]_ are not necessarily

orth_ in,p_e. but V_ __ . _ _ . and _ are t_ee

orthogonal vectors. If crxe defines a unit vector _ , and a two-

,_i_ble-__t _,noti_ ?_ _(_,, _,) . ,_h that:

then the unit vectors _ , x _3 , and _3 are mutually orthogonal

in sI_ce. Multiplication of the unit vectors _ , b x _ , and

_3 in turn into Eq. (3-3) yields a set of three mutually orthogonal

equations :

(3-i0)

(3-11)

(3-1_)
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In Equations (3-10) to (3-12), the relation given by Eq. (3-7) and

Eq. (3-8) has been substituted. The operator '_-7_ Is a three

dlmensio_al operator operating on the observer coordlnate functions

only,i.e.,I_)orI_L) • _enlater_nth_aerlvati_
operation on the source coordinate is needed, the operators _111

be distlngulshed by a _uperscrlpt o , for example _o .

o

In order to expreas the _ dependent functions explicitly, and

to express the source coordinate functlons in ccmponent form _ ,

and _ _y be written

After soae vector manipulations, Eq. (3-I0) to (3-I,2) are broken
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into a set of nine sixth-order equatioDs :

where _he operator _ is also an observer coordinate operator; it can

be considered to be operating on any one of the two or three observer

coordinate functions immediately to its right. Written in its entirety,

is
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Co_is_ of ]_q_I!'(3-15) and (2-14), _ may further be simplified into

the for_:

T_(_-_:_(_T) ,
9"_ = (3-16)

t _ T"(T"-T,"/V"+e) , ,'/ _'--_ n_

where T, _ and T? are the two non-trivial roots of Eq. (2-14), and the

relation of Eq. (2-11) has been used in arriving at Eq. (3-16). By

the same token, all operators _ to the right of the equality sign in

Eq. (3-i_) are replaced by (-7_). Substitute Eq. (3-16) into Eq. (3-I_)

and drop out the functions common to both sides of the equality sign.

Multip__othsi_s_ _ er _J

Then integrate over the entire "bounded

al properties of the eigenfunctions

, whichever one is appropriate.

_s space, utilizing the orthogon-

and _ :

where /_ and/_;_ are normalizing factors.

the complex conjugate is em_loyed. The integration yields distinct

soluti_s for the _ dependent f_cti_.

The asterisk indicates
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The remains of Eq. (3-14) _re two dimensior_ equations:

• [). ?

(3-_8 a)

(3-18 b)

(3-18 c)

(.3-1_<_)

(3-18 e)

(3-18 £)

(3-z8g)

(3-,,8 h)

(3-z8 ±)

where

I _ _'(T _"_"J __

(3-19)

Equations (3-18 c), (3-18 f) ancl (3-18 i) directly involve the functio_
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_%,_z) ; they can be represented by a symbolic equation:

(3-20)

One has reduced the problem to that of searching for an appropriate

two-dimensional scalar Green's function. The problem is thus greatly

simplified.

The remaining equations in (3-18) all involve _(_,,_) .

Since the function _ comes from _M , one may expect that

the solutions for Eq. (3-20) .my somehow be related to the solutions

of the remaining six equations in Eq.

is observed that if _n satisfies Eq.

must satisfy respectively:

and

(3-18). Indeed, it is so when it

.-%

(2-12)then _ and_ __

If Eqs. (3-18 a), (3-18 d) and (3-18 g) are multiplied by the dyadic

shown to be symbolically:
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si=IZ=ly,,=itlpl__ toEq,.(3-18_),

their left-hand sides m_y be shown to be

-)

(3.,18 e) ana (3-18 h),

6L:

The two bars bracketing a fumctio_ indicate oDly the scalar is being

considered.

_, _ _7_ and_..._areIde_tlfled_ ZK_/_,¢/, _ all
nine equaticms in Eq. (3-18) have been reduced to o_e symbolic

equatic_ (3-20). Exact solutioms of Eq. (3-20) depend upon the

coordinate systems employed sm_ the type of boundary eonsidered. In

general, it can be written symbolicallT:

.-c.,,i._,f,,_,,_,,_,_, for closed bo_ndsmy in I

(_-20)

_,,__,._2,__,._. ) for ope:bounae._vin .z_

I". the ease of a closed boundary, _._=- _,_ is the complex

factors. In the case of an open boundary, _ and _ are the two

independent solutioms of Eq. (2-12) and _ is a constant involving

the Wronskian of the two Independent solutions. With Eq. (3-20)
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solved_ the Green's dyadic may then be readily obtained:

(3-_5)

r._.,, r_/?;. _;1 0

In circular cylindrical coordinates with open boundary in r and

the solution for Eq. (3-20) is:

in line with
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Eq. (2-17); the Green's dyadic is: (for r_ case o_ly)

_"ZZ. Remarks an_ Proposed Future Studies

The results obtained in the preceding sections e_able one to extend

considerably his scope of investigations in the problems of waves

propagation in plasma. For example, waves generated by a current sheet

source of finite width _y be analyzed in elliptical cylindrical

coordinates. Waves generated by a semi-infinite sheet of current will
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require analysis in parabolic cylindrical coordinates. Investigation of

problems similar to these were previously avoided due to inadequate

tools.

The work to be earrie_ out in the future will be concentrated on

the investigation of the properties of radially propagated waves;

especially the properties of the waves near the source region.
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